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the branch-line couplers and the sum-and-difference
networks are of appreciable magnitude for only three
cycles or less of the carrier frequency. Thus, in passing
through these components, pulses only three cycles
long, or spaced from each other by only three cycles, re-
tain their general shape and identity.

CONCLUSION

It has been shown that the pulse responses of micro-
wave components, made of nondispersive transmission
lines only, are sums of replicas of the applied pulse. Two
different ways were described by which the amplitudes
and times of occurrence of the individual replicas can be
found from the component frequency responses or im-
pulse responses.
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This technique for finding pulse responses was applied
to stepped transmission-line transformers, to the back-
ward coupler as a hybrid and sum-and-difference net-
works, and to branch-line couplers as hybrids and sum-
and-difference networks. It was found that rectangular-
pulse envelopes lasting for only three periods of the car-
rier frequency would pass through any one of these com-
ponents without extreme distortion.
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Sets of Eigenvectors for Volumes of Revolution*

J. VAN BLADEL?

Summary—The electric and magnetic eigenvectors of a volume
of revolution can be written in terms of two-dimensjonal scalar and
vector functions. These functions are the eigenfunctions of certain
linear transformations in the meridian plane. The form of the trans-
formation is examined, and much attention is devoted to the or-
thogonality properties of their eigenfunctions and the calculation of
their eigenvalues from variational principles.

finite three-dimensional volume, the “clectric”

and “magnetic” modes are of particular im-
portance for the calculation of electric and magnetic
fields. The purpose of the present paper is to investigate
the properties of these modes in volumes of revolution
of the kind depicted in Fig. 1. An explicit mathematical
expression can be given for the modes of a few simple

§§ MONG the sets of eigenvectors which exist in a

* Manuscript received by the PGMTT, September 22, 1959; re-
vised manuscript reccived, October 11, 1959. Research supported by
the Atomic Energy Commission, Contract No. AT(11-1)-384.

+ Dept. of Electrical Engineering, University of Wisconsin, Madi-
son, Wis.

volumes, such as the sphere and the coaxial cylinder,
but in the most general case one has to resort to ap-
proximate procedures to obtain quantitative data. The
most frequently used methods rely on the replacement
of differential equations by difference equations, and
on the use of variational principles for the calculation
of eigenvalues. It is necessary, for a systematic applica-
tion of these methods, to possess a precise classification
and enumeration of the modes and their characteristics.
This is what this paper, inspired by a previous analysis
by Bernier,! scts out to provide.

The first structure to be examined will be the toroidal
volume of Fig. 1(a), which is of importance for circular
particle accelerators and, more generally, for ring-like
structures through which particles or fluids are flowing.
The fact that a toroidal volume does not contain any
portion of the axis of revolution facilitates the mathe-
matical formulation of the problem.

1], Bernier, “On clectromagnetic resonators,” Onde élect., vol.
26, pp. 305-317; August—September, 1946.
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Fig. 1—Cavities of revolution.

I. PRELIMINARY REMARKS
A. Fields in Volumes of Revolution

One of the problems to be investigated is the de-
termination of the expansion coefficients of a piece-
wise continuous vector function a(r, z, ¢) (7, 2, and ¢ are
cylindrical coordinates). This determination is simpli-
fied by a preliminary Fourier expansion in ¢.

d(’, 2, ¢) = 130(7', Z) + ‘Uo(i’, Z)ﬂtﬁ

+ Z [Sin m¢'15m<7” Z) + cos 'm¢>-g'm(1’, Z)J

+ 20 [(~wn(r, 2) sin mé + va(r, 2) cos me) g). (1)

The p's and §'s are “meridian” vectors (i.e., vectors
situated in the meridian plane). Vectors such as 94,
where 7, is a unit vector perpendicular to the meridian
plane and directed toward increasing ¢, form the “cir-
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cular” components. The divergence and curl of @ are
given by

MO
div @ = divy po + D sin m¢-<divM B — .__>

v,

mw’") &)

7

-+ Z cos mq‘)-(divM G —

curl @ = curly o + curl (votis) + D sin me

m
-[curlM P — curly (wnity) — — (g X cjm):l
7

-+ E cos mae

'|:CUI'LM qm —'— Cul'lju (T)mﬂ¢) + ‘nﬁ (12.;5 X ﬁm)j| (3)
¥

Differential operators having the subscript M (M for
meridian) are obtained from the usual forms by drop-
ping derivatives with respect to ¢ and (for meridian
vectors) ¢ projections.

When ¢ is solenoidal (<.e., div ¢=0), the following
relations hold:

NV, MW

diVM ]50 = 0, dile[ ﬁm = I leM g_m = (4)
r r )
When 2 is irrotational (z.e., curl §=0),
curly o = curly pn = curly Gm = curly (vetts) = 0,
m -
curlyy (vntts) = — — (ds X Pn),
7
m — -~
curly (wnity) = — — (Gis X Gu). )
7

B. Electric Eigenvectors

The electric eigenvectors of a simply-bounded volume
fall into two categories:

1) Irrotational eigenvectors funp=grad Y¥mn, where
Ymnp 18 an eigenfunction of

V2 ¥mnp + NnpYmnp = 0
Ymnp = 0 on boundary surface S. (6)

The triple index accounts for the triple infinity of
eigenfunctions.
2) Solenoidal eigenvectors é,.,,, solutions of

- -
— curl curl é,np + Munprnp = 0

@, X &mnp = 0 on boundary surface .S. (7N

The notation # stands for “unit vector,” and 4, is the
unit vector along the outward-pointing normal to .S.
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C. Magnetic Eigenvectors

The complete set of magnetic eigenvectors of a tor-
oidal volume consists of

1) A single “sourceless” vector 5o =grad o, tangent to
the boundary surface.?
2) Irrotational eigenvectors Zunp=grad BOm.,, where
Onp is an eigenfunction of

00y
———— =0 on S. (8)

V2 Hmnp + anpemnp =0
an

3) Solenoidal eigenvectors %, ,, solutions of
— curl curl Zmnp + timnpfmnp = 0

@n X curl Zpmp = 0onS.  (9)

It can be shown that the eigenvalues p and A’ are
identical, and that the electric and magnetic solenoidal
eigenvectors are multiples of the curl of each other. In
other words, &, is proportional to curl /iy, and .y is
proportional to curl éu.,. The proportionality con-
stants depend on the normalization of the eigenvectors.

D. Variational Principle for Eigenvalues

Variational properties are of considerable interest for
the approximate determination of eigenvalues and
eigenvectors when the boundaries are irregular in shape.
The basic property is as follows: when £ is a negative
definite self-adjoint linear transformation,® all eigen-
values in £1,4\,u,, =0 are real and positive. Denoting
by {a, b) the scalar product of @ by b, the lowest
eigenvalue Ay is the minimum of

(Lu, u) .

T == (u, u)

This minimum is attained for the lowest eigenfunction
1. The functions admitted {or competition (the “ad-
missible” functions) must belong to the space of defini-
tion of the transformation £. The second lowest eigen-
value is the minimum value of J with respect to admis-
sible functions that are orthogonal to u; (i.e., for which
{u, uy)=0), and the minimum is attained for u=ux.
Similarly, N\, is the minimum of J with respect to #'s
that are orthogonal to the (z—1) lowest eigenfunctions,
and the minimum is attained for u#=u,. Similar results
are obtained, mutatis mutandis, for positive-definite
transformations.

These considerations can be applied to transforma-
tions (6) and (8). The scalar product to be used here is

2 We define a “sourceless” vector as having zero divergence and
zero curl.

3L is self-adjoint when {(u, Lo)= (L, v) for all #, v belonging
to the space of definition of £, and it is negative definite when
(u, Lu)<0, the equality sign being obtained for, and only for,
=0, These properties are associated with a specific definition of the
scalar product {a, ).

Van Bladel: Sets of Eigenvectors for Volumes of Revolution

311

[f[rabdV, and the M’,,, are obtained as stationary

values of
ff ARV A4
v
f f vV
v

The admissible functions vanish on the boundary, and
are continuous up to their second derivatives. The eigen-
values v,,, are obtained as stationary values of the
same expression, the admissible functions having the
same continuity properties, but a wvanishing normal
derivative on .S.

Transformation (7) with scalar product {4, &)
= [[fva - b dV leads to the characterization of N,y
as stationary value of

fffé-curl curl édvV
v
[[ [ e
v

where the admissible vectors have zero divergence, are
continuous up to their second derivatives, and are
perpendicular to the boundary surface.

JW) = — (10)

J(2) =

(11)

II. ErLeEcTrIC MODES IN TOROIDAL VOLUMES
OF REVoLUTION

The general considerations of the preceding para-
graph will now be applied more specifically to volumes
of revolution.

A. Irrotational Eigenvectors

The general expression for these eigenvectors is

Fonp = grad|[sin #me - amnp(r, 2)]

. w COS M
= sin me¢ - gradys amnp + ————— Qumnp B, (12)
¥
The functions « are eigenfunctions of
m? ,
VM2 — T, | @mnp + >\mnp Umnp = 0
2
with
mnp = 0 on C. (13)

Modes of revolution are obtained by setting m=0 in
(13). For ¢-dependent modes, the usual ¢ degeneracy
is encountered; i.e., two modes, grad[sin m¢ - a] and
grad [cos me -a], correspond to each value of N. This
characteristic property will be found for all other ¢-
dependent modes to be examined in the future. For rea-
sons of conciseness, only one of the modes will be writ-
ten down explicitly. The second one can then be ob-
tained simply by increasing m¢ by /2.
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The transformation associated with (13) is sell-
adjoint and negative definite with respect to the scalar
product [[pa-b-rdrdz. The cn,, are orthogonal in the
sense that [ pomnp Otmnrprdrdz=0for (n, p) = (n’,p"). The
norms of f and « are related by

[Ff
Vv
m2 2
Wff [(grad Cinp)? + — amnp] rdrdz
D r?
’ 2
= Amnp'ﬂ'ff amnpf’drdz.
D
The eigenvalues A.., can be obtained as stationary
values of
2 mia
ff aI:VM a — —j| rdrdz
D y?
f f ardyds
D

The admissible functions vanish on boundary (¢) and
have continuous derivatives up to the second order.

I

(14)

J(e) = — (15)

B. Solenoidal Eigenvectors

1) Modes of Revolution: The solenoidal eigenvectors
Zonp can usefully be split into a meridian and a circular
part according to

éonp = Evﬂp(r: Z) + BOnp(rf z>ﬂ¢'

If the latter expression is substituted into (7), and the
¢ independence taken into account, uncoupled equa-
tions are obtained for ¢ and . The modes are conse-
quently of two different sorts.

a) Circular modes Bonpils: There is a double infinity
of these modes, corresponding to the eigenfunctions of

607117

2
VﬂIIBOnp - '1’7 _'_ k’o’npﬁonp =0 Bonp = 0Qon C. (16)

The B.np, are, in consequence, equal to the functions
i, encountered in Section II, A, and partake of their
orthogonality and stationarity properties. The eigen-
values N/, , of the circular modes are equal to the N'y,,.
‘The normalization is particularly simple:

f f f Bonpiis BongiisdV = 2 f f Bonrdrdz.  (17)
v D

An example of application of variational principle (15)
to calculate N'/,,, is given? in Fig. 2.

¢ For more details, see D. F. Meronek and J. Van Bladel, “Reso-
nant modes and frequencies of a cigar-shaped cavity,” Microwave
J., pp. 32-33; May, 1959.
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Fig. 2—Resonant frequencies of a cigar-shaped cavity. The resonant
frequency is related to the eigenvalue A2 by A2=(2#f/c)2 Curves 1
and 2 correspond to the lowest two values of N"., (20). Curves 3
and 4 correspond to the lowest two values of A,y (16). The cir-
cles represent experimentally determined points. (Reproduced
with permission of the Microwave Journal.)

b) Meridian modes é,np: The eigenvalue problem
satisfied by the é,,, is

_ e
—curl curl Conp + Aonp Conp = 0

7/_‘n X Conp = 0
with { ? on (C).

divy Conp =

(18)

It is a simple matter to show that these meridian vectors
are actually the curl of the circular magnetic eigenvec-
tors. More precisely, the ., can be put in the form,

bon Adon Oon
2 i, + [ "+ ”J i,
93 ar 4

(19)

Conp = curl [8p,p y] = —

1
= 7 [grad (Bons?) X 7245];
where the functions 0,., satis{ly the eigenvalue problem,
2 1 1
Vu — —é 6onp _|_ >\onp 607’,17 =0
7

with

#in X cutl [8onp %s] = 0 on (C). (20)

The boundary condition can be rewritten in the form,

1 9 00onp
— (50711) 7') =
r on

60np

21

ccos e = 0.

+

on 7
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The 8,,, are orthogonal with respect to a scalar product
[[pabrdrds, and the eigenvalues are the stationary
values of (15) with m=1. The admissible functions are
required to possess the usual continuity properties, and
to satisfy (21) at the boundary. The normalization inte-
gral is simply

f f f Conp” Conp @V = 21 Noms f f bonp? drdz.  (22)
L) D

2) Aszimuth-Dependent Modes: The periodicity of the
modes indicates that the general form of &, is

- - . _!
bmnp = Cmnp SIL MP ~+ Cmnp COS M
7 . -
+ [Banp €OS MmP — Brnp Sin me |th.

If the latter expression is inserted in (7), uncoupled and
identical equations are obtained for the pairs (¢, ) and
(¢', 8"). This fact indicates the existence of an eigen-
vector Cmmp SIN MP~+Bunpy cos mpiy, and also of an
eigenvector (¢/, —f’) obtained from the former by in-
creasing m¢ by w/2, i.e., by rotating the configuration
through an angle 7/2m. The equations which ¢,.., and
Bnnp are required to satisly are rather complicated.

Dropping the subscripts for a moment, they turn out to
be

mic  m mB
—curly curlyy 6 — — 4 —-grad 8 + — %,
r? r r?
+ Ne=0; (23)
2 8 2m m
VB — — + — (¢ a) — —diviw ¢+ N8 = 0. (24)
[s ¥ ¥

These equations can be simplified by taking into account
the fact that &u,, is solenoidal; 4.e., that

div [¢ sin m¢ + 8 cos mpd,)

mB
= sin ma¢ |:divM ¢ — ~——] = 0.

4

There exists, in consequence, a relation between 3 and
¢, namely,

¥
B =— divyr €. (25)

m

Upon substitution of this expression in (23), an equa-
tion for ¢ alone is obtained.

2
2

VMC—mnp T s C_mnp + ﬂr'— divﬂ[ Emnp + )\r’n,npc_mnp = 0
- 7
ﬁ'n X Emn = ()
with { i ? on (C). (26)
lleﬂ[ c_mnp =0
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The meridian part of a solenoidal eigenvector must, in
consequence, be an eigenvector of (26). Conversely, to
each eigenvector of (26) corresponds an eigenvector,

¥
Emnp-Sin mep - — divar ¢- cos meiiy,
m

(27)

of the original three-dimensional problem (7). It is im-
portant to list orthogonality and stationarity properties
of the é..p. These properties can be obtained from the
general equation (9) wherein (27) is substituted. They
can also be established directly from a study of the
transformation,

2 m? 2d, .
L7 = VM‘Z_J'* 4‘)“1—)+ leM ?
r2
i, X9 =0
with on C,
\divad = 0 (28)

in the meridian plane. The relevant steps are collected
in the Appendix. It turns out that the scalar product
which is suited to the problem is

72 -
<'Z7, 7I)> = ff |:771@ 4+ —diva ?-divar @ |rdrds (29)
D m? -

where 7 and @ are two meridian vectors, With the latter
definition of the scalar product, transformation £ is
self-adjoint and negative-definite, the eigenvectors are
orthogonal in the sense that

<C_mnm 5mn'p’>

1,2

= ff \:c'mnp-c’,,mfp» + — diVM C—,,,np‘diVM' C—mn'pijlf’dfdz = 0
D m?

for (n, p) # (n'p")

and the eigenvalues A’',,,, are obtained from the sta-
tionarity properties of

B (8¢, &)
(¢, &)

e
ff [6_'£C_ + — divy ¢-divy £c':|rdrdz
D m?
- =
ff [5-5 + —divy é-divy E]rdrdz
D me

where the ¢ have continuous derivatives up to the sec-
ond, and satisfy the boundary conditions evidenced in
(28). Third order derivatives appear in the numerator,

J() =

(30)
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An equivalent expression for the latter can be derived
which involves lesser order derivatives only. The deriva-
tion is based on

1,2
ff {5'£5 —|— —_— diVM C—diVM £5+ | CuI'lM C-I2
D mt
m 7 2
+ I:w e X ¢+ curly (~— divys c‘) 12{| } rdrdz
7 m
= f {(ﬂn X ¢)-curly & — divy ¢(é-11,)

7 I
— —divy E[ﬁt' curly <—— divas 5) ﬂ¢}} rde, (31)

m m

a direct consequence of the substitution of (27) in the
general relation,

fff[—17~curlcurlz')+cur11")-cur1 7} do

=ff (9 X curl 9)-4,dS. (32)
5

The right-hand member of (31) vanishes for all admissi-
ble vectors. As a consequence, J(¢) can be rewritten as
r 9%, 1 dc,

J(¢) =N/D with
7 (')2c:z:|2
m O0rdz m 0z m 932

ff {[mcz
D 7
60, acz 2 14 6251'
+ [ } + [~ +
0z a7 m Ir?
2 dc, r 0%, ¢ (1 2
—_ + —- + — —~m>]}rdrdz
m 9rdz v \m
72 [ Oc, cr ac,\?
D=ff |:6r2+022+_< +—+ )errdz.
D m? \ A7 7 93

This form is suitable for numerical computations. We
repeat that the admissible vectors must satisfy the con-
ditions,

3 de¢,

m ar

m 03

i ¢y Cr d¢,
divy ¢ = — 4 =
ar 4 0z

0,

[c‘)(ﬁni =¢ sine — ¢, co8¢ = 0, (33)

at the boundary.
Finally, the normalization relations are

[[ [ e tumar
14

2
= rff I:c'm,,p‘ Cmnp + — (diva c"mp)z:' rdrdz. (34)
D m?
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ITI. ExpaNsioN IN ELECTRIC EIGENVECTORS

We now turn to the task of determining the coeffi-
cients of expansion of the vector function & considered
in the first paragraph® The expansion breaks down in
separate expansions involving the various Fourier co-
efficients:

Polr, 2) = Z Z A onp grad aonp + Z Z DonpConp,
n p n  p

‘000’7 Z) = Z Z C‘m:l? :BOMM
n p

ﬁM(ﬂ z) = Z Z Amnp grad Cmnp T Z Z ErnnpComnps
n 3 n P

Gn(r, 3) = Z Z By grad dmnp + Z Z FrnpCmnps
n D n 2

wm v
(7, 2) = Z E Avnnp — g + Z Z Ernp = diVas Crnp,
n » ¥ n » w

m

Wa(?, 2) = Z Z Binnp — Cmnp
n p

7

4
+ 22 2 Frnp— divar Gnnpe (35)
n » m

The value of the coefficients can be calculated from (1)
and (35). Results only will be quoted. For the irrota-
tional terms:

ff Porgrad a,,rdrdsz
. D
' 2
Aonp Qonp tdrds
D
f f Aonpdivas Pordrdz
D
= - 3
’ 2
)\an Aonp rdrdz
D
_ m
ff [Pm-grad Cmnp + 'Um'—-am,,p:| rdrds
D r
Amnp =
)\;nnp f f a,g,mprdrdz
D
. - k2
f f [leM P~ — vm] Amnptdrdz
v D 7
>\7,nnp f f ainp rdrds
D

A similar expression can be obtained for By, by sub-
stituting ¢, and w,, for $,, and v, respectively. Formulas
(2), (36), and (37) indicate that coefficients 4 and B
vanish when & is solenoidal.

4 onp

(36)

(37

® Simpler formulas are obtained when @ is specialized to be an
electric or a magnetic field. This specialization will be considered in a
subsequent paper where the application to particle accelerator prob-
lems will be emphasized.
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For the solenoidal terms:

onp

onp =
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ff Yo Bonp? drds ff curly (Bonptty) - curl (v,dg)rdrds ——fvo[ﬂrcurl (Bonptts) Jrdc
. D _ D e ,
2 1t 2
ff Bonpydrdz )\onp ff Bonpfdrdz
D D
ff Do Conprdrds ff curlsr §o-curlys Conprdrdz — f (. X Po) - curlar Eonprde
D D ¢
ff l C—an|27'd1’dz )\/o;zp ff I C_Onpizfdf’dl
D D
ff donp(curl ﬁo-dd,)rdrdz——f&onp(ﬁo-ﬁt)rdc
D c ,
2
ff Sonptdrds
D
r
ff ljle'Emnp + — v divy Emnp:l rdrds -
D m
(38)

Emnp =

The numerator can be rewritten as

1
7 ff {curlM P curlys Conp
D

mnp

+ |:curl (vmflg) + ” (11 X fm)}

r
r o m
-[curl <ﬁ¢ — diva c"mnp> + —(dg X c’mnp)] rdrdz.
m 7

A similar expression can be obtained for F,,, by sub-
stituting §» and w,, for §, and v, respectively. It will
be noticed that the C, D, E, and F vanish when @ is irro-
tational [which, according to (3), entails vanishing of
the surface integral in the numerator |, and perpendicu-
lar to the boundary (which entails %, X $» =0 and 2,,=0,
1.e., vanishing of the line integral in the numerator).

IV. MaAGNETIC MODES IN TOROIDAL VOLUMES
OF REvVOLUTION

The complete set of eigenvectors includes, first of all,
a “sourceless” vector 4,/7. It includes, in addition, a
triple infinity of irrotational eigenvectors and a triple
infinity of solenoidal eigenvectors. These we now pro-
ceed to investigate.

4. Irrotational Eigenvectors

The irrotational eigenvectors are of the form Gu.,
=grad [sin Mm@ Ymap(r, 8)| Where the V.., are eigen-
functions of (13), but with the boundary condition
0Ymnp/On=0 on ¢. All properties of the au.,(orthog-
onality, norm, etc.) are still valid provided « and v are

, .
f f [ l Cmnyp \2 + 7—2 (divy 6mnp)2] rdrds
» m

substituted for « and N, respectively. The eigenvalues
can be obtained from (15), but the admissible functions
are now required to have zero normal derivative on (c).

B. Solenoidal Eigenveciors

1) Modes of Revolution: Two categories of modes will
be recognized here.

a) Circular modes 8, %4 There is a double infinity of
these modes, corresponding to the eigenfunctions of (20)
with accompanying boundary conditions. The normali-
zation relation is (17), with 8 replaced by 8.

by Meridian modes d,n,: These eigenvectors are
actually the curl of the circular electric eigenvectors.
In mathematical form,

- 1
donp = curl [Bonptls] = 7 [grad (Bonp) X 11,]. (39)

Itis a simple matter to check that curl donp =\’ snp Bonp g
In consequence, curl d,,, vanishes on the surface of the
torus, and the boundary condition @, Xcurl dy,,=0 is
satisfied there, as it should be. The normalization in-
tegral connecting d to B is similar to (22) with ¢ and &
replaced by d and 8.

2) Aszimuth-Dependent AModes: The magnetic vectors
are the curl of the electric vectors émnp More precisely,
With &pnp given by (27), fmap will be

7 m
Bonnp = COS M [curl <ﬂ¢ — divy c‘,,mp> + —— (a4 X cmnz,)]
4

m

meridian part

+ sinmo curl Gunp
—

- (40)
circular part



316

The norm of % can be evaluated with the help of (31),

as:
fff }_Lmnp' ﬁmnpdV = >\rln/np fff Emnp* émnpdv
v

a2
2
17 - - . -
= Apunp® ff [cmnp- Emnp T —= (divar cmnp)z—J rdrdz.
D m-

If €n.p has been previously normalized, the normalized
magnetic eigenvector is curl &unp/ (AN mep)¥% It is some-
times desirable to calculate Zm.p, directly without rely-
ing on a previous knowledge of émyp. The relevant steps
are as follows:
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The value of the coefficients can be calculated from
(1) and (35). Results are, for the sourceless vector,

f f vodrds
D

AO:W'

f f drds
D ¥

vo(7, 2) is 1/(27r) times the circulation of ¢ around the
“parallel” circle through 7, 2. For a vector which is irro-
tational in the toroidal region, the circulation is con-
stant and equal to 2wd,.

For the irrotational vectors, the coefficients are

(44)

f ’Yanp(ﬁn'ﬁo)rdc - ff Yonp diva ﬁo”df’dz
e D

onp =

?

2
Vonp ff ’Yzmpf’di’dz
D

W
f’}/mnp(ﬁn'ﬁm)ydc - ff Ymnp <diVﬂ[ ﬁm i Um> Tdrdz
¢ D 7

Amnp =

(45)

2
Vimnp f f YVmnplt Grdz
D

1) Jmnp will be of the form
. - 7 -
Vimnp = Qpnp S0 P + — COS MPtig divas dmnp.  ($1)
m

2) If we go through the same motions as with the
electric eigenvectors, we discover that the meridian part
dpnp is an eigenvector of

, 2 . m> _ 24, - 7 -
L'd = Vﬂ[ dmnp bt ——2 dmnp + —dIVM dmnp _l_ )\mnp dmnp =0
7 ¥

find =0
with { - on (C).
curlyyd = 0

Transformation £’ is again self-adjoint and negative-
definite with respect to scalar product (29). Its eigen-
vectors are orthogonal, and its eigenvalues are the sta-
tionary values of (30). The admissible vectors, however,
must now satisfy the boundary conditions evidenced
in (42). These can be written more explicitly as

Gin-d = d,cose+d,sine=0
¢ € on (C),
ad, ad.,

- = 0. 43
9z or (43)

(42)

l curlM (ZI

V. ExpPansiON IN MAGNETIC EIGENVECTORS

This expansion is particularly suitable when vector
d is tangent to the boundary surface. The expansion is
similar to (35), with v and d replacing « and é. The only
difference occurs in the expansion for v, which is now

A
1)0(7’, Z) = —r—o‘ + E Z Conp 5onp(7'; z).
3 r4

A similar expression can be obtained for B,,,, by sub-
stituting G, and w. for p., and v,, respectively. For-
mulas (2) and (45) indicate that Aenp, Admnp, antd Bunyp
vanish when @ is solenoidal and perpendicular to the
boundary.

For the solenoidal vectors,

f f 108 onp7 ¥ A3
_ D

onp
f f 8;nprdrdz
D
f f curl (8o.pite) - curl (votly)rdrdz
D
= 2
Ny f f Songtdrds
D
ff Do+ donprdrds
Danp = 2

f f donp dongrdrds
D
ff Clll‘lM ﬁo'Cul‘lM CZDnzﬂ’di’dZ
D
Ao f f Aonp - donprdrds
D
ff Bonp(curl f,-diy)rdrdz
D
) )
f f Bonp?drdz
D
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ff [ﬁm “dnp + i U, divar Jmnp] rdrds
D m
- _ r? . )
ff |:dmnp'dmnp + - (diVM dmnp)Q] rdrdz
D m?

The numerator can be rewritten as

1 -
77 ff {curlM ﬁm . curlM dmnp
)\mnp D

+ [curlM (vmtls) + ” (s X fm]

(46)

mnp T

¥

7 _ m .
. l:curl ar <— iy divyy dmnp) + — (s X dm,,p)]} rdrdz.
7

m

A similar expression can be obtained for Fma., by sub-
stituting ¢.» and w,, for p. and v., respectively. It will
be noticed that, according to (3), the C, D, E, and F
vanish when 4 is irrotational.

VI. Recions CONTAINING THE AXIS

In regions of the type depicted in Fig. 1(b) and 1(c),
which contain parts of the axis of revolution, the Fourier
expansion coefficients of a continuous function A (7, 7, ¢)
behave in an interesting way in the vicinity of the axis.
Let the expansion be written as

A(}’, 3, ¢) = A()(f', 2) + Z sin mq&Am(r, Z)
m=1

+ D cos mpB(r, 7). (47)

me=1

If 4 is continuous at all points, including those situated
on the axis, the limit of 4 as » approaches zero must be
independent of ¢. This clearly requires 4,, and B, to
vanish on the axis, while the value of 4 reduces to
Ao(o, 2) thereon.

Consider now a vector 4, continuous at all points, in-
cluding those situated on the axis, and possessing a
Fourier expansion of the type given in (1). By a series of
simple calculations, the details of which are left to the
reader, it is possible to establish the following properties
of the Fourier coefficients:

1) o is directed along the axis;

2) v, vanishes on the axis;

3) $1and gy are purely radial on the axis, and the
equalities pr.=v1, ¢1r=w; hold there;

4) The coefficients $u, Gm, Um, and w, vanish on the
axis when m is larger than one.

These simple rules for scalar and vector functions al-
low one to foresee the behavior of functions possessing
higher orders of continuity. The scalar and vector
eigenelements of a cavity have continuous Laplacian
and “curl curl” on the axis. Their behavior is governed
by the following rules which are of great importance
for practical computations:
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In a simply-bounded, simply-connected cavity of the
type shown in Fig. 1(b),

1) Electric and magnetic irrotational eigenvectors:
a) When of revolution, satisfy unchanged bound-
ary conditions on the outer contour, but the
additional condition da/dr =3v/dr =0 on the
axis.
b) When azimuth-dependent [as described in
(13) ], satisfy the additional condition a=y=0
on the axis.

2) Electric and magnetic solenoidal eigenvectors:

a) When of the “circular mode of revolution” type
[as described in (16) and (20) ] satisfy the addi-
tional condition 8=+ =0 on the axis.

b) When of the “meridian mode of revolution”
type [as described in (18) and (39) | satisfy the
additional condition ¢,=0¢,/d7 =0 on the axis.

¢) When azimuth-dependent [as clescribed in (26)
and (42) ], satisfy the additional conditions,

Jcy
€y = =0
or

form =1,

Ce=1¢ =20 for m > 1 on the axis. (48)

These various relations can be checked on the normal
modes of the circular cylinder, which can be written
down explicitly by separation of variables.® (See Fig 3.)
The irrotational electric eigenvectors, for example, de-
rive from scalar functions

. hms 7\
Omnp = N —— T\ fmp —
L a/

where the u., are roots of J,(x) =0. The power expan-
sion of Bessel's function,

(M)”‘[l
27m !

confirms that 0a,up/07 = amup=0 on the axis. Another
check is afforded by the expression for the solenoidal
¢-dependent electric eigenvectors:

ia
2 aJ m <ﬂm;o _~>
nw @ nTe [24

— g —

L ump® L dr

n mrzj < r> B
COS— S m\ Ump —— | Uz
L *a

(\r)?

Tnlhr) = T im+ 1)

+ .- ](m integer),

1ty

C-mnp =

8 See, e.g., C. G. Montgomery “Techniques of Microwave Meas-
uri17nents,” McGraw-Hill Book Co., Inc., New York, N. Y., p. 297;
1947, .
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Fig. 3—Circular cylindrical cavity.
The (r, %) dependent part of the circular component is

7
(7, 3) = — divas Cmnp
m

L 7

It is immediately apparent that the relevant conditions
(48) are satisfied.

A last remark is in order concerning doubly-bounded
volumes of the kind represented in Fig. 1(c). The electric
eigenvectors considered up to now do not form a com-
plete set unless we add the electrostatic field grad a, to
them. This field is obtained by establishing a potential
difference between the two boundary surfaces, assumed
to be metallized. More precisely, aq is the solution of

V]zuao = 0,

ag=1 on Sy, ag = 0 on Sy (49)

(or any multiple thereof).
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APPENDIX

PRrOPERTIES OF THE OPERATOR

2 m? 2 .
L =Vy — —+ —da,divy
72 7

Scalar product (29), and the metric derived from it,
define a Hilbert space. The main properties of trans-
formation £ are obtained from a consideration of
(3, £3), where 7 belongs to the domain of wvectors
satisfying the boundary conditions appearing in (29). If
we apply (31) to 9, we discover that the right-hand mem-
ber vanishes, so that

2
(3, £3) = ff l:i)u,@ﬁ + — divy 9-divy £17:l rdrds
D m

Jf e

-
+ curly (— ity divar €)
m

2 m
+’—a¢xz7
¥

2} rdrdz.  (50)

Clearly, (3, £3) is never positive. We now want to
prove that £5,=0 implies %,=0, which would then
make transformation (28) negative-definite. We first
need to establish Helmholtz’ theorem in the meridian
plane. More explicitly, we want to examine the splitting
of a meridian vector P into

P =grad 4 + (51)
where grad A, the longitudinal term, is required to be
perpendicular to (¢), and to have the same divergence
as P. In other words, 4 must satisfy

Vi A =divy P 4 =0on (C).

It is a simple matter, with the help of Green's theorem,
to show that this problem has a unique solution, and
that the longitudinal term vanishes when divaP=0.
It is also a simple matter, using Stokes’ theorem in the
meridian plane, to show that each meridian vector for
which curl P=0 can be put in the form grad 6. If,
in addition, P is perpendicular to the boundary ¢, po-
tential @ is nothing but the function A4 appearing in
(51). The sources of 7 are, consequently, the curl of P
and the tangential components of P. When £3,=0, the
left-hand member of (51) vanishes; this implies that the
squares in the second member also vanish, and, in
particular, that curl %,=0. Letting f,=grad 4, it is
found that 4 must satisfy

2

2 m 2 2
£79 = Vyrgrad 4 —TgradA + —#Vyd =0
7 7

with

A = VyA = 0on (C).
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Projection of £7, on the z axis indicates that

ad 9 WL2
— Vi d——A41=0.
9z 7?

In consequence, Vi1 — (m?/r%)/ has a constant value

along a parallel to the z axis. This value must be zero,
because
2 m? _
Vaud — — A =0 (32)
’,2

on ¢. It follows that (52) is valid over the whole area D.
An application of Green’s theorem shows that

ff {—— A2+ igrad/li}rdrdz— 0
D

so that both 4 and 3, must vanish.

The self-adjoint character of £ (i.e., (¢, £d)={d,
£¢)) can be quickly established by using a relation
derived from the three-dimensional Green’s theorem
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If we use this relation twice, setting g=7/m divy P, h
=r/m divy Q and subtracting, we obtain, since
. 9 m2€ 2 N
divy| Vyée— —+ — @, divy ¢
r? 7

n 2 ¥ d iVM c
= - vﬂ/l +
7 m

9 m? 2m? 2 4 o
= Vu (diVM 5) ——divy e+ —¢ +— (leM ), (34)
r? 73 r or

2m? m?+ 1
Cr —
73 ¥

diVM c

the relation,
o _ -
ff [Q.M — P20+ divy O divy £P
D m

72 — —
- divay P divy £QJ rdrdz = 0. (53)

m

The second member in (53) vanishes because of th_e
boundary conditions. Eq. (55) is nothing but (¢, £d)

(32): —(d, £¢)=0, the relation we set out to prove.
2mg m? + 1 2mc,
V1IP44P+*** i)+ h Mg—*fg%——m—
7 2 2

_ mh — —
+ <d1V o P —_ g‘>'<diVM Q - *‘> + curlM 1)'(‘,11]‘1‘\1 Q

7 s

[curlw gdg) ﬁ (g X F)]-l:curl‘w (hiy) -+ m (#4 X @):l} rdrdz
7 7

— . Im — _ . . mg
= f {(12,,, X Q) -curly P — —— (- P) — hity-curly (giy) + (.- Q) <d1VM P — ,,_)} rdc.
c ¥ 4

(53)

A Printed Circuit Balun for Use with Spiral Antennas*

R. BAWERT axp J. J. WOLFET

Summary—A novel printed circuit balun is described which is
particularly well suited to applications where space is at a premium.
The design utilizes unshielded strip transmission line, but is readily
adaptable to all of the common printed circuit transmission line
techniques. When the balun is housed within the cavity of a spiral
antenna, boresight error is virtually eliminated, ellipticity ratios of
less than 2 db are maintained over an azimuth angle greater than
+60°, and the input standing-wave ratio is less than 2:1 over an
octave frequency range. Experimental results are given and addi-
tional applications are described.

* Manuscript received by the PGM'TT, October 16, 1959; revised
manuscript received, November 23, 1959. The work rgportcd in this
paper was sponsorcd by the Airborne Instruments [. ab., Div. of
Cutler-Hammer, Inc., Melville, N. Y., P.O. No. 6468, under Air Foree
Contract No. AF33(600) 37929
1 Aero Geo Astro Corp., Alexandria, Va.

. INTRODUCTION

BALUN is a term used by antenna engineers to
describe a device which transforms an unbal-
anced to a balanced transmission line. To the
microwave engincer, the same device might be called a
ratrace, magic tee, or more generally a hybrid. In
lumped circuit applications, we also find a similar device
used in conjunction with balanced mixers, phase de-
tectors, and single-sideband modulators, to name a few.
However, regardless of what the device is called, the
operation will appear to be basically similar provided
the analysis is made using a compatible frame of refer-
ence. One particularly powerflul tool used at microwaves

4



