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the branch-line couplers and the sulll-:~nd-diffcrellt;e

networks are of appreciable magnitude for only three

cycles or less of the carrier frequency. Thus, in passing

through these components, pulses only three cycles

long, or spaced from each other by only three cycles, re-

tain their general shape and identity.

CONCI.USION

It has been shown that the pulse responses of micro-

wave components, made of nondispcrsive transmission

lines only, are sums of replicas of the applied pulse. Two

different ways were described by which the amplitudes

and times of occurrence of the individual replicas can be

found from the component frequency respouscs or im-

pulse responses.

This technique for finding pulse responses was applied

to stepped transmission-line transformers, to the back-

ward coupler as a hybrid and sum-ancl-difference net-

works, and to branch-line couplers as hybrids and sulm

and-d if fcreuce networks. It was found that recta ngukw-

pulse envelopes lasting for only three periods of the cal=

rier frequency would pass through any one of these com-

ponents without extreme distortion.
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Sets of Eigenvectors for Volumes of Revolution*

J. VAN BLADEL~

Swnrnary-The electric and magnetic eigenvectors of a volume

of revolution can be written in terms of two-dimensional scalar and

vector functions. These functions are the eigenfunctions of certain

linear transformations in the meridian plane. The form of the trans-

formation is examined, and much attention is devoted to the or-

thogonality properties of their eigenfunctions and the calculation of

their eigenvalues from variational principles.

AMONG the sets, of eigenvectors which exist in a

finite three-dimensional volume, the ‘(electric”

and ‘~magnetic” modes arc of particular im-

portance for the calculation of electric and magnetic

fields. The purpose of the present paper is to investigate

the properties of these modes in volumes of revolution

of the kind depicted in Fig. 1. An explicit mathematical

expression can be given for the modes of a few simple
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volulnes, such as the sphere aud the coaxial cylinder,

but in the most general case one has to resort to ap-

proximate procedures to obtain quantitative data. ‘~he

most frequently used methods rely on the replacement

of clifferential equations by difference equations, and

on the use of variational principles for the calculation

of eigeuvalues. It is necessary, for a systematic applica-

tion of these methods, to possess a precise classification

and enumeration of the ruo{les and t-heir characteristics.

This is what this paper, inspired by a previous analysis

by Bernier,l sets out to provide.

‘~hc first structure to be examined will be the toroidal

volume of Fig. 1 (a), which is of importance for circular

particle accelerators and, more generally, for ring-like

structures through which particles or fluids are flowing.

The fact that a toroidal volume dots not contain any

portion of the axis of revolution facilitates the mathe.

matical formulation of the problem.

‘ J. Bernier, “On clcctromagnctic resonators, ” Onde 4W., VOI.

26, pp. 305–317; August–September, 1946.
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Fig-. l—Cavities of revolution.

1. PRELIMINARY REMARKS

A. Fields in Volumes of Revolution

One of the problems to be investigated is the de-

termination of the expansion coefficients of a piece-

wise continuous vector function ti(~, z, +) (v, z, and @ are

cylindrical coordinates). This determination is simpli-

fied by a preliminary Fourier expansion in ~.

The ~’s and ~’s are “meridian” vectors (i.e., vectors

situated in the meridian plane). Vectors such as VO%,,

where ~ti is a unit vector perpendicular to the meridian

plane and directed toward increasing +, form the “cir-

cular” components. The divergence and curl of a are

given by

curl ~ = curl~ j50 + curl (7JozZJ + ~ sin mrj
m

+ ~ cos m+
m

Differential operators having the subscript M (M for

meridian) are obtained from the usual forms by drop-

ping derivatives with respect to @ and (for meridian

vectors) @ projections.

When ti is solenoidal (i.e., div ti = O), the following

relations hold:

When @ is irrotational (i.e., curl ti = O),

cur114 ]0 = curl,lf #m = curl.~f Qm = curl~ (vo&) = O,

B. Electric Eigenvectors

The electric eigenvectors of a simply-bounded volume

fall into two categories:

1)

2)

Irrotational eigenvectors ~~~~ = grad *~~P where

*,n.p is an eigenfunction of

V2 +mnp + L.p Awl = o

# – O on boundary surface S.mrzp — (6)

The triple index accounts for the triple infinity of

eigenfunctions.

Solenoidal eigenvectors ZnnP, solutions of

— curl curl &.v + h~.a ?~.fl = O

L X %np = O on boundary surface S. (7)

The notation ~ stands for “unit vector, ” and tin is the

unit vector along the outward-pointing normal to .S.
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C. Magnetic Eigenvectors

The complete set of magnetic eigenvectors of a tor-

oidal volume consists of

1) A single “sourceless” vector & = grad 00, tangent to

the boundary surface. z

2) Irrotational eigenvectors ~~,,fl = grad 19~~P, where

9n.P is an eigenfunction of

72 gmnp +

3) Solenoidal

9 – o :;;: =~mnp mnp — O on S. (8)

eigenvectors ii~.P, solutions of

— curl curl Zn,@ + ,L.L~.PIL.P = O

U. X curl L.P = O onS. (9)

It can be shown that the eigenvalues p and h” are

identical, and that the electric and magnetic solenoidal

eigenvectors are multiples of the curl of each other. In

other words, Z,ti~P is proportional to curl ~~,~fl and ~~~P is

proportional to curl Zn.P. The proportionality con-

stants depend on the normalization of the eigenvectors.

D. Variational Principle for Eigenvalues

Variational properties are of considerable interest for

the approximate determination of eigenvalues and

eigenvectors when the boundaries are irregular in shape.

The basic property is as follows: when & is a negative

definite self -ad joint linear transformation,3 all eigen-

values in .$zL,, +knzL,, = O are real and positive. Denoting

by (a, b) the scalar product of a by b, the lowest

eigenvalue Al is the minimum of

{s2.4, -u)
J(u) = –

(u, Zt) “

This minimum is attained for the lowest eigenfunction

ZL1. The functions admitted {or competition (the ‘(ad-

missible” functions) must belong to the space of defini-

tion of the transformation S. The second lowest eigen-

value is the minimum value of J with respect to admis-

sible functions that are orthogonal to u 1 (i. e., for which

(u, Ul) =0), and the minimum is attained for u =u!.

Similarly, A. is the minimum of J with respect to IL’S

that are orthogonal to the (n — 1) lowest eigenfunctions,

and the minimum is attained for u = ZL.. Similar results

are obtained, mutatis mutandis, for positive-definite

transformations.

These considerations can be applied to transforma-

tions (6) and (8). The scalar product to be used here is

2 \Ve define a ‘{sourceless” vector as having zero divergence and
zero curl.

a.$ is self -ad joint when (u, J3v) = (&zt, v) for all a, v belonging
to the space of definition of S, and it is negative definite when
(It, &u) <0, the equality sign being obtained for, and only for,
ZL= O. These properties are associated with a specific definition of the
scalar product (a, b).

~j&abd V, and the h’~np are obtainecl as stationary

values of

L(J!

$V2+OdV

J(+) = –
v

., (lo)

Lu

#’dV
v

The admissible functions vanish on the boundary, and

are continuous up to their second derivatives. The eigen-

values v~. p are obtained as stationary values of the

same expression, the admissible functions having the

same continuity properties, but a vanishing normal

derivative on S.

Transformation (7) with scalar product (ti, ~)

=~~~lti . b d V leads to the characterization of ~“~nfl

as stationary value of

Sss

Z. curl curl iidlP’

I(Z) = ——v——––- (11)

Sss

z.zdV
v

where the admissible vectors have zero divergence, are

continuous up to their second derivatives, and are

perpendicular to the boundary surface.

II. ELECTRIC MODES IN TOROIDM. VOLUMES

OF REVOLUTION

The general considerations of the preceding para-

graph will now be applied more specifically to volumes

of revolution.

A. Iwotational Eigenvecto~s

The general expression for these eigenvectors is

7mnp = grad [sin m~. a~u~(r, Z)]

m Cos ?@
= sin md. grad,ll CY~~P+ ——- (&np a~.

r

The functions a are eigenfunctions of

(V’’’-?)amnp+’’nnpa
with

a~., = O on C.

(12)

(13)

Modes of revolution are obtained by setting m = O in

(13). For @-dependent modes, the usuall + degeneracy

is encountered; i.e., two modes, grad [sin Y@ . a] and

grad [COS md .a ], correspond to each ~,alue of k’. This

characteristic property will be found for all other @

dependent modes to be examined in the future. For rea-

sons of conciseness, only one of the modes will be writ-

ten down explicitly. The second one (can then be ob-

tained simply by increasing mq5 by 7r/2.
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The transformation associated with (13) is self-

ad joint and negative definite with respect to the scalar

product ~~Da. b. rdrdz. The a~~p are orthogonal in the

sense that~~@~np a~~,p,rdrdz = O for (n, ~) # (n’, ~’). The

norms of ~ and a are related by

=%- J’s[(grad a~ti,)’ + ~ a~.p 1rdrdz
D

= A;n,. T

Ss
a;nprdydz.

D

(14)

The eigenvalues hl~mP can be obtained as stationary

valLles of

Ss[ m%

1a V; a — — rdrdz
Y’

J(a)=– ‘“n —. (15)

U a’rdrdz
D

The admissible functions vanish on boundary (c) and

have continuous derivatives up to the second order.

B. Solenoidal Eigenvectors

1] Modes of Revolution: The solenoidal eigenvectors

Z~nP can usefully be split into a meridian and a circular

part according to

If the latter expression is substituted into (7), and the

r# independence taken into account, uncoupled equa-

tions are obtained for t and ~. The modes are conse-

quently of two different sorts.

a) Ci~culaY modes /30.pzz4: There is a double infinity

of these modes, corresponding to the eigenfunctions of

The (30nP are, in consequence, equal to the functions

/
ASPECT RATl O L 2 a ~

Fig. 2—Resonant frequencies of a cigar-shaped cavity. The resonant
frequency is related to the eigenvalue h’ by X2=(27r~/c)Z. Curves 1
and 2 correspond to the lowest two values of h“’.n~ (20). Curves 3
and 4 correspond to the lowest two values of k“~~~ (16). The cir-
cles represent experimentally determined points. (Reproduced
with permission of the Microwave Journal.)

b) Meyidian modes c~~p: The eigenvalue problem

satisfied by the ~on~ is

{

‘an x Conp = o
with

div~~ EO,,P= O
on (C), (18)

It is a simple matter to show that these meridian vectors

are actually the curl of the circular magnetic eigenvec-

tors. More precisely, the t“~l can be put in the form,

CMnp encountered in Section II, A, and partake of their

orthogonality and stationarity properties. The eigen- Where the functions ~onp satisfy the eigenvalue problem,

values h’tOnP o f the circular modes are equal to the A’l.fl.

The normalization is particularly simple:

(
V;f –

An example of application of variational principle (1.S)
Z. X curl [80.P 22.] = O on (C)e (20)

to calculate h’ ‘o,,, is given4 in Fig. 2.
The boundary condition can be rewritten in the form,

4 For more details, see D. F. Meronek and J. Van Bladel, “Reso-
nant modes and frequencies of a cigar-shaped cavity, ” Miwowaue ; ;,(aon,y) =*+ ~p .Cos e = o. (21)
J., pp. 32-33; May, 1959. r
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The ~onP are orthogonal with respect to a scalar product

~~~ab~drdz, and the eigenwdues are the stationary

values of (15) with m = 1. The admissible functions are

required to possess the usual continuity properties, and

to satisfy (21) at the boundary. The normalization inte-

gral is simply

2) A zimuth-Dependerzt Modes: The periodicity of the

modes indicates that the general form of &~P is

If the latter expression is inserted in (’7), uncoupled and

identical equations are obtained for the pairs (t, ~) and

(;’, (3’). This fact indicates the existence of an eigen-

vector c~.p sin mq5 +%p cos m@ti, and also of an

eigenvector (t’, –B’) obtained from the former by in-

creasing md by r/2, i.e., by rotating the configuration

through an angle r/2m. The equations which F,,,. v and

@~.P are required to satisfy are rather complicated.

Dropping the subscripts for a moment, they turn out to

be

+ A“t = O; (23)

These equations can be simplified by taking into account

the fact that .?~~P is solenoidal; ie., that

[

m/3
—— 1sinm~ div~l~——— = O.

‘r

There exists, in consequence, a relation between P and

Z, namely,

/3 = ~ div~r E. (25)
m

Upon substitution of this expression in (23), an equa-

tion for t alone is obtained.

(26)

The meridian part of a solenoidal eigenvector must, in

consequence, be an eigenvector of (26). Conversely, to

each eigenvector of (26) corresponds an eigenvector,

of the original three-dimensional problem (7). It is im-

portant to list orthogonality and stationarity properties

of the L?~~@.These properties can be obtained from the

general equation (9) wherein (27) is substituted. They

can also be established directly from a study of the

transformation,

[

llnxfi=o

with on C,

\divlI~ = O (28)

in the meridian plane. The relevant steps are collected

in the Appendix. It turns out that the scalar product

which is suited to the problem is

where i and w are two meridian vectors, With the latter

definition of the scalar product, transformation s is

self-adj oint and negative-definite, the {eigenvectors are

orthogonal in the sense that

and the eigenvalues h’ ‘~wp are obtained from the sta-

tionarity properties of

where the E have continuous derivatives up to the sec-

ond, and satisfy the boundary conditions evidenced in

(28). Third order derivatives awwear in the numerator,. .
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An equivalent expression for the latter can be derived

which involves lesser order derivatives only. The deriva-

tion is based on

‘[:’@xc+cur1M(5div’f’)a’l}ydy’z
.

s{
(% X t). curlji~ z – div,~ :(;.%)

c

-idiv”’c[a’”cur’’’(kdiv’f’)u’l)’d’’31)

a direct consequence of the substitution of (27) in the

general relation,

L/Y[– fi. curl curl z + curl z ocurl Z] dv
w

.
-JY

(fi X curl i). undS. (32)
8

The right-hand member of (31) vanishes for all admissi-

ble vectors. As a consequence, J(r) can be rewritten as

J(E) = iV/D with

Ss{[-mcZ ‘r a%, 1 dc,
N=

1

r d%, 2
— — —— —_

+i~i+ii:i::”; ‘z’

2 dcz

y ‘c ‘%-m) ll’d””
+&”z+;”&

This form is suitable for numerical computations. We

repeat that the admissible vectors must satisfy the con-

ditions,

IEX%I =c, sinc-cZcose=O, (33)

at the boundary.

Finally, the normalization relations are

u’sI&p.Em.pdV
v

Ss [

Y’
= r

1
Gnnp - Ln.p + ;2 (divM Gn.p) ‘ rdrdz. (34)

D

III. EXPANSION IN ELECTRIC EIG~NVECTORS

We now turn to the task of determining the coeffi-

cients of expansion of the vector function 8 considered

in the first paragraph.5 The expansion breaks down in

separate expansions involving the various Fourier co-

efficients:

id?’, ‘) = x
n.

Vo(r, z) = ~

jm(t’, z) = i
n

g?n(?,z) = ~
n

P np

E con. BoItp,
D

P n P

P n, ‘P

The value of the coefficients can be calculated from (1)

and (35). Results only will be quoted. For the irrota-

tional terms:

Ss
$0. grad aomprdrdz

A
D

Olt’n=

x’onp
H

a:.p rdrdz
D

H ao~ndiv~l p~rdrdz
D

.— ?

Ss

(36)

ALP C& rdrdz
D

u [&. grad a~nP + v~. ~. am.,
1

rdydz

A
D r

~np . —

A’mnp
H

C&p ~drdz
D

A similar expression can be obtained for Bmnp by sub-

stituting ~% and W- for ~~ and v~, respectively. Formulas

(2), (36), and (37) indicate that coefficients .4 and B

vanish when ~ is solenoidal.

5 Simpler formulas are obtained when 6 is specialized to be an
electric or a magnetic field. This specialization will be considered in a
subsequent paper where the application to particle accelerator prob-
lems will be emphasized.
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For the solenoidal terms:

c Onp =
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J
- ‘-

— v. w. curl (~,@$) ]~’dc
c

>

A
/11
on’p

Ss
/3:.prdrdz

D

315

(38)

JJDl_” Mz -1

The numerator can be rewritten as

A similar expression can be obtained for F.., by sub-

stituting ~fi and w~ for j~ and v~, respectively. It will

be noticed that the C, D, E, and F vanish when LZis irro-

tational [which, according to (3), entails vanishing of

the surface integral in the numerator], and perpendicu-

lar to the boundary (which entails iin X ~~ = O and v~ = O,

i.e., vanishing of the line integral in the numerator).

IV. MAGNETIC MODES IN TO~OIDAL VOLUMES

OF REVOLUTION

The complete set of eigenvectors includes, first of all,

a “sourceless” vector ZZ~/r, It includes, in addition, a

triple infinity of irrotational eigenvectors and a triple

infinity of solenoidal eigenvectors. These we now pro-

ceed to investigate.

A. Iwotational Eigenvectors

The irrotational eigenvectors are of the form ~~np

= grad [sin md .y~n~(r, z)] where the y~np are eigen-

functions of (13), but with the boundary condition

dym,n2/dn = O on c. All properties of the a~.P(orthog-

onality, norm, etc. ) are still valid provided y and v are

substituted for a and A’, respectively. The eigenvalues

can be obtained from (15), but the adm~issilble functions

are now required to have zero normal derivative on (c).

B. Solenoidal Eigenvectors

1) Modes of Revolution: Two categories of modes will

be recognized here.

a) Circular modes &mp~b: There is a c[ouble infinity of

these modes, corresponding to the eigenfunctions of (20)

with accompanying boundary conditions. The normali-

zation relation is (17), with (3 replaced by 3.

b) Meyidian modes &%~: These eigenvectors are

actually the curl of the circular electric eigenvectors.

In mathematical form,

It is a simple matter to check that curl d,,mp ==~’’onP &Pti4.

In consequence, curl c?~~fl vanishes on the surface of the

torus, and the boundary condition I.L X curl &nP = O is

satisfied there, as it should be. The normalization in-

tegral connecting ~ to (3 is similar to (22) with z and ti

replaced by ~ and O.

2) Azimuth-Dependent ilfodes: The magnetic vectors

are the curl of the electric vectors ZvL~P, More precisely,

with Z~nP given by (27), )i~n~ will be

meridian part

+ sin md curl %P
—. (40)

circular part
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evaluated with the help of (31),

If zm.p has been previously normalized, the normalized

magnetic eigenvector is curl .%. fl /(A’’~nP)’/2. It is some-

times desirable to calculate k~n, directly without rely-

ing on a previous knowledge of &nP. The relevant steps

are as follows:

The value of the coefficients can be calculated from

(1) and (35). Results are, for the sourceless vector,

Ss
v~drdz

D
/40 =

r r drdz
(44)

JJ —Dy

vo(r, z) is l/(2r~) times the circulation of ~ around the

‘(parallel” circle through r, z. For a vector which is irro-

tational in the toroidal region, the circulation is con-

stant and equal to 27rA O.

For the irrotational vectors, the coefficients are

f
ynP(a$~]~dc-J~DY~P(divj-~ v~).d.dz

.4 ‘mnp =

Ss

(45)

Vm%p y;.prdrdz
D

I) ~n.P will be of the form A similar expression can be obtained for B~.p by sub-

stituting ~~ and w~ for pm and zJ~, respectively. For-

imnp = Jm., sin ?ti+ + ~ cos m+z.+ divlI dnx,. (41) mulas (2) and (45) indicate that A0.2, .-l~.p, and B.,.p
‘m vanish when d is solenoidal and perpendicular to the

2) If we go through the same motions as with the boundarY.

electric eigenvectors, we discover that the meridian part For the solenoidal vectors,

Z%. P is an eigenvector of

f’n~ . 2ZZ,
43(Z = v:{ imnp– >d ..p -t — diVM&wp + inn, ~nznp= O Cmw=

‘r

{

lz..d =0
with on (C).

curl~ J = O
(42)

Transformation s‘ is again self-adjoint and negative- =

definite with respect to scalar product (29). Its eigen-

vectors are orthogonal, and its eigenvalues are the sta.

tionary values of (30). The admissible vectors, however,

must now satisfy the boundary conditions evidenced

in (42). These can be written more explicitly as
D O,L?I=

V. EXPANSION IN MAGNETIC EIGENVECTORS .—

This expansion is particularly suitable when vector

~ is tangent to the boundary surface. The expansion is

similar to (35), with ~ and d replacing a and E. The only

difference occurs in the expansion for VO, which is now
—

Sszoti.,,~nivdz
D

HG?On,.~.aprdrdz
D

AO
Z)O(?’,Z) = — + ~ ~ COmJ~onp(~,z).

Y np
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The numerator can be rewritten as

A similar expression can be obtained for F~np by sub-

stituting ~w and ZV7, for fl~ and v~, respectively. It will

be noticed that, according to (3), the C, D, E, and F

vanish when ti is irrotational.

VI. REGIONS CONTMNING THE AXIS

In regions of the type depicted in Fig. 1 (b) and 1 (c),

which contain parts of the axis of revolution, the Fourier

expansion coefficients of a continuous function A (r, ti, ~)

behave in an interesting way in the vicinity of the axis.

Let the expansion be written as

A (r, Z, 4) = Ao(r, z) + Z Sin WZ@A4m(7,z)
m. 1

+ ~ CosW’@l?m(?’,z). (47)
m-1

If A is continuous at all points, including those situated

on the axis, the limit of A as r approaches zero must be

independent of ~. This clearly requires .4 m, and B~ to

vanish on the axis, while the value of A reduces to

A O(o, z) thereon.

Consider now a vector ti, continuous at all points, in-

cluding those situated on the axis, and possessing a

Fourier expansion of the type given in (1). By a series of

simple calculations, the details of which are left to the

reader, it is possible to establish the following properties

of the Fourier coefficients:

1) #0 is directed along the axis;

2) VOvanishes on the axis;

3) $1 and ~1 are purely radial on the axis, and the

equalities Pl, = VI, W,= ZO1hold there;

4) The coefficients j%, ~~, vm, and W~ vanish on the

axis when m is larger than one.

These simple rules for scalar and vector functions al-

low one to foresee the behavior of functions possessing

higher orders of continuity. The scalar and vector

eigenelements of a cavity have continuous Laplacian

and “curl curl” on the axis. Their behavior is governed

by the following rules which are of great importance

for practical computations:

In a simply-bounded, simply-connected cavity of the

type shown in Fig. 1 (b),

1) Electric and magnetic irrotational eigenvectors:

a)

b)

When of revolution, satisfy unchanged bound-

ary conditions on the outer contour, but the

additional condition da/dr =dy/& = O on the

axis.

When azimuth-dependent [as described in

(13) ], satisfy the additional condition a= y = O

on the axis.

2) Electric and magnetic solenoidal eigenvectors:

a)

b)

c)

When of the “circular mode of revolution” type

[as described in (16) and (20)] :sa.tisfy the addi-

tional condition (3=7 = O on the axis.

When of the “meridian mode of revolution”

type [as described in (18) and (39)] satisfy the

additional condition c, = dcZ/& = O on the axis.

When azimuth-dependent [as described in (26)

and (42) ], satisfy the additional conditions,

tkr
~g=—=o form = 1,

&

C.=c?. =o for m > 1 on the axis. (48)

These various relations can be checked on the normal

modes of the circular cylinder, which can be written

down explicitly by separation of variables.’ (See Fig 3.)

The irrotational electric eigenvectors, for example, de-

rive from scalar functions

where the Km ~ are roots of Y.,(x) = O.

sion of Bessel’s function,

(M’)’n
Jm(Ar) = —

[

~ _ (~fl)’

2rnm ! qnz + 1)
+“

confirms that da~~P/dr = a~,~n = O on

check is afforded by the expression

o-dependent electric eigenvectors:

The power expan-

:1
. (m integer),

the axis. Another

for the solenoidal

()
;r

dJm L+. —
mr a’ %5rz a

Gmnp = — —. ——. sin—._ — fir
L ~~pz L d,r

o See, e.g., C. G. Montgomery “Techniques of Microwave Meas-
~re~ents, ” McGraw-Hill Book Co., Inc., New ‘tork, N. Y., p. 297;
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,---

7-

L

L$,~. 4

1

I

Fig. 3—Circular cylindrical cavity.

The (r, z) dependent part of the circular component is

Y
Vn (v, Z) = — div~ fimnp

m

‘n’ir ‘m a’ n7rz () ‘r
. .—. sin —.J. I+- .

L Y p~pz L a

It is immediately apparent that the relevant conditions

(48) are satisfied.

A last remark is in order concerning doubly-bounded

volumes of the kind represented in Fig. 1 (c). The electric

eigenvectors considered up to now do not form a com-

plete set unless we add the electrostatic field grad cw to

them. This field is obtained by establishing a potential

difference between the two boundary surfaces, assumed

to be metallized. More precisely, aO is the solution of

V~aO = O,

C20= 1 on S1, a.o=Oon Sz (49)

APPENDIX

PROPERTIES OF THE OPERATOR

m’ 2
S=V:–~+—ti,divM

r

Scalar product (29), and the metric derived from it,

define a Hilbert space. The main properties of trans-

formation & are obtained from a consideration of

(z, Qs), where i belongs to the domain of vectors

satisfying the boundary conditions appearing in (29). If

we apply (31) to 3, we discover that the right-hand mem-

ber vanishes, so that

Clearly, (V, SD) is never positive. We now want to

prove that .&fio = O implies ZO= O, which would then

make transformation (28) negative-definite. We first

need to establish Helmholtz’ theorem in the meridian

plane. More explicitly, we want to examine the splitting

of a meridian vector ~ into

~ = grad A +; (51)

where grad A, the longitudinal term, is required to be

perpendicular to (c), and to have the same divergence

as ~. In other words, A must satisfy

V; A = divM ~ A = Oon (C).

It is a simple matter, with the help of Green’s theorem,

to show that this problem has a unique solution, and

that the longitudinal term vanishes when div~~ = O.

It is also a simple matter, using Stokes’ theorem in the

meridian plane, to show that each meridian vector for

which curl ~ = O can be put in the form grad~ O. If,

in addition, ~ is perpendicular to the boundary G, po-

tential O is nothing but the function A appearing in

(51). The sources of ~ are, consequently, the curl of ~

and the tangential components of ~. When sfiO = O, the

left-hand member of (51) vanishes; this implies that the

squares in the second member also vanish, and, in

particular, that curl iO = O. Letting fio = grad A, it is

found that A must satisfy

with

(or any multiple thereof). A = V~A = O on (C).
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Projection of J3170on the z axis

Wolfe: A Printed

llcficates that

In consequence, V.#.l – (WZz/~z)Ah:M a constant

Circuit

V:LIUC

along a parallel to the z axis. This walue must be zero,

because

m’
V:,(.4 – ;; A = () (52)

on c. It follows that (52) is valid over the whole area D.

An application of Green’s theorem shows that

so that both A and ~0 must. vanish.

The self-adjoil~t character of & (i.e., (~, Sd) = (~,

$;)) can be quickly established by using a relation

derived from the three-ciilllel~sioll:~l Green’s theorem

(32) ,

Balun for Use with Spiral Antennas 319

If we use this relation twice, setting g = r/m div.v ~, h

= r/m div,lr Q aud subtracting, we obtain] since

the rclatiou,

The seconcl member in (53) vanishes because of the

houlldary conditions. Eq. (55) is Ilothiug but (t, $d)

– ((~, $t) = 0, the relation we set out to prove.

mz+l 2mc,
—— g + —y:,–

Y’ )

(.53)

A Printed Circuit Balun for Use with Spiral Antennas*

R. BAWER~ AND J. J. WOLFEt

Summary—A novel printed circuit balun is described which is

particularly well suited to applications where space is at a premium.

The design utilizes unshielded strip transmission line, but is readily

adaptable to all of the common printed circuit transmission line

techniques. When the balun is housed within the cavity of a spiral

antenna, boresight error is virtually eliminated, ellipticity ratios of

less than 2 db are maintained c,ver an azimuth angle greater than

+ 60°, and the input standing-wave ratio is less than 2:1 over an

octave frequency range. Experimental results are given and addi-

tional applications are described.

* Yla]luscript rccci~-ed I)y the PGM’1”~, octoher 16, 1959; I-cvised
man[lscript received, TVovemher 23, 1959. ‘flc wmk reported ill this
paper was sponsorwf hy the Airhornc Il]strunlcnts [ah., l~iv. of
Culler-Hammer, Jnc., Melville, X. ‘{., 1’.0. No. 6468, ulLder :\ir l+’orce
Contract ATO, AF33(600)-37929.

t .kcro Geo Astro Corp., Alexandria, Va.

[. lNTRODIJCTION

A

BALUIN is a term used by antenna engineers to

describe a device which transforms an unbal-
1

anced to a balanced transmission line. To the

microwave engineer, the same dcvicc might be called a

rat race, magic tee, or more generally a hybrid. In
lul]lped circuit applications, we also find :L similar device

usml in conjunction with balanced mixers, phase de-

tectors, and sillgle-sideb:~nd modulators, to name a few.

I-[owever, regardless of what the clcvicc is called, the

operation will appear to be basically similar provided

the analysis is maclc using a compatible frame of refer-

ence. onc particularly powerful tool used at microwaves


